JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

(Registered in U. S. Patent Office) ([®] Copyright, 1961, by the American Chemical Society)

VOLUME 83

JUNE 2, 1961

Number 10

PHYSICAL AND INORGANIC CHEMISTRY

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY OF THE STATE UNIVERSITY OF IOWA, IOWA CITY, IOWA]

Terbium Oxides. III. X-Ray Diffraction Studies of Several Stable Phases

By N. C. BAENZIGER, H. A. EICK, H. S. SCHULDT AND L. EYRING

RECEIVED NOVEMBER 5, 1960

A previous study¹ involving tensiometric measurements, differential thermal analysis and cursory X-ray diffraction analysis revealed intermediate stable phases in the terbium-oxygen system between the sesquioxide^{2,3} and the dioxide.⁴ Previously, many observations of a brown higher oxide of terbium had been made and the formula Tb_4O_7 had been given to it.⁵⁻⁷ Work done in these Laboratories,^{1,8} however, failed to reveal any special stability for a composition $TbO_{1.75}$, and it is believed to arise from a slow oxidation of a lower oxide when the latter is cooled in air or oxygen. The present work was undertaken to clarify the various stable phases existing in this oxide system using previous work as a guide in sample preparation.

Experimental Part

Materials.—The terbium (99.9 + % pure) was obtained from Dr. F. H. Spedding, Ames Laboratory of the U.S.A.E. C., as oxide. Reagent grade chemicals were used in the dissolution of these oxides, precipitation of terbium as the oxalate and other procedures in the preparation of fresh oxides. Commercial tank oxygen was used to prepare the higher oxides. **Preparation of Samples.**—Specimens with oxygen con-

Preparation of Samples.—Specimens with oxygen content not greater than $\text{TbO}_{1.827}$ were made using molecular oxygen. Compositions between $\text{TbO}_{1.827}$ and $\text{TbO}_{1.81}$ were prepared in an autoclave operating under an oxygen pressure of up to 600 atmospheres and a temperature up to 425°. For compositions below $\text{TbO}_{1.81}$, the oxides were treated in a platinum lined reactor⁹ capable of operation at 10 atmospheres at 1100° or in an apparatus¹⁰ incorporating an automatic recording thermobalance.

Samples with oxygen content greater than TbO_{1.83} were made by treatment with atomic oxygen in a discharge tube.^{4,11}

All samples were cooled as rapidly as the apparatus would permit after the desired composition had been reached. No appreciable weight change occurred in those experiments where analyses could be made. Previous observations¹

(1) E. Daniel Guth and L. Eyring, J. Am. Chem. Soc., **76**, 5242-5244 (1954).

(2) W. H. Zachariasen, Phys. Rev., 73, 1104 (1948).

(3) V. M. Goldschmidt, F. Ulrich and T. Barth, Matem.-Naturvich, Klasse 1925, No. 5, p. 5; C. A., 19, 2764 (1925).
(4) D. M. Gruen, W. C. Kohler and J. J. Katz, J. Am. Chem. Soc.,

(4) D. M. Gruen, W. C. Kohler and J. J. Katz, J. Am. Chem. Soc., **73**, 1475 (1951).

(5) R. Marc, Ber., 35, 2382 (1902).

(6) R. J. Meyer and M. Koss, ibid., 35, 3740 (1902).

(7) Prandtl and Rieder, Z. anorg. u. allgem. Chem., 238 225 (1938).

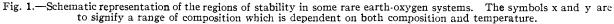
(8) Wilbur Simon and LeRoy Eyring, J. Am. Chem. Soc., 76, 5872 (1954).

(9) C. L. Sieglaff and L. Eyring, ibid., 79, 3024 (1957).

(10) A. Ostroff and R. T. Sanderson, J. Inorg. Nuclear Chem., 9, 45 (1959).

(11) H. A. Eick, Ph.D. Thesis, State University of Iowa, 1956.

imply that no new phases are introduced in this quenching procedure.


The composition of the oxides was always determined by observing the weight loss between the oxidized material exposed to oxygen as described above and the sesquioxide. The sesquioxide is formed by reduction of a higher oxide with hydrogen at 650° for 15 hr. X-Ray Analysis.—Powder diagrams were obtained in a

X-Ray Analysis.—Powder diagrams were obtained in a 114.6 mm. Norelco powder camera. Diffractometer traces were produced using a Norelco diffractometer. Iron radiation (λ_{α} , = 1.93597 Å., λ_{α_2} = 1.93991 Å. and λ_{β} = 1.75654 Å.) was produced by a General Electric XRD5 unit.

Results and Discussion

Figure 1 shows the phases which have been identified in the terbium-oxygen system in this study. TbO_{1.500} prepared by reduction in H₂ as described above is a body-centered cubic structure (a =10.7281 ± 0.0005 Å.) with only a small range of solid solution. It has the Mn₂O₃ (bixbyite) structure and is isostructural with many other rareearth sesquioxides. The bixbyite structure results from the ideal fluorite type structure upon the ordered removal of one-fourth of the oxygens from eight unit cells of the parent fluorite type. A sample melted on a tungsten strip in high vacuum was observed to be the monoclinic B type.

As oxygen is added to the b.c.c. material, a second phase of composition $\text{TbO}_{1.715}$ appears. There is a miscibility gap between these phases at temperatures as high as 750° . Neither phase shows an appreciable range of solid solution. The X-ray diffraction pattern of this phase is very similar to that for a face-centered cubic fluorite-type phase except that some of the lines have split into

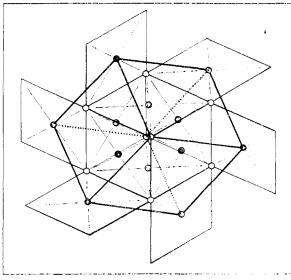


Fig. 2.—Rhombohedral cell of Tb_7O_{12} . The cell is outlined with rods; the shaded circles represent Tb atoms associated with the rhomb. cell.

doublets or triplets and a few additional weak lines occur. The splitting of the fluorite-type lines can be accounted for on the basis of a rhombohedral pseudo cell, $a_0 = 5.319 \pm 0.001$ Å., $\alpha = 89^{\circ} 41.2'$, which is only a slight distortion of the ideal fluorite type cell. In order to account for the weak additional lines, the rhombohedral cells (and their related hexagonal cells) listed in Table I were considered. In this table, only the a' axis is given; the b' and c' axes may be obtained by cyclic permutation of a, b and c in a'. The smallest cell which will explain the weak reflections has a' =a - b/2 + c/2, b' = a/2 + b - c/2, c' = -a/2 + b/2 + c, with a volume 7/4 times the fluorite unit cell. Table II shows the comparison of the observed $1/d^2$ values with those calculated on the basis of this cell with $a = 6.509 \pm 0.002$ Å., $\alpha =$ 99° 21′ \pm 0.5′. The relationship of this unit cell to the fluorite cell is shown in Fig. 2. The ideal rhombohedral angle is 99° 36'

The rhombohedral cell would contain 7 terbium atoms and 14 oxygen atoms if the composition were TbO₂ and the structure were the ideal fluorite structure. Removal of two oxygen atoms along the three-fold axis of the cell would destroy the cubic symmetry and allow the rhombohedral distortion which is observed. The cell contents now become Tb_7O_{12} or $TbO_{1.714}$, in excellent agreement with the analytical determination of the composition.

	Tabl	ΕI	
	Num-		Num-
Cell axes ^a based on the cubic CaF ₂ axes	ber of M atoms/ cell	Cell uxes" based on the cubic CaF ₂ axes	ber of M atoms/ cell
a'		<i>a'</i>	
a/2 + b/2	1	a - b + c	16
a + b/2 + c/2	2	3a/2 - b + c/2	19
a	4	2a + b + 2c	20
3a/2 + b + 3c/2	4	2a - b/2 - c/2	25
2a + 3b/2 + 3c/2	5	3a/2 - b/2 + c	26
a - b/2 + c/2	7	5a/2 + 3b/2 + c	26
5a/2 + 5b/2 + 2c	7	2a + b/2 + c/2	27
a + b	8	3a/2 + 3c/2	27
3a + 5b/2 + 5c/2	8	3a/2 + b/2 + 2c	28
3a/2 + b + c/2	9	2a - b	28
5a/2 + 3b/2 + 2c	9	3a + 2b + 2c	28
3a/2 - b/2	13	a - 3b/2 + 3c/2	31
3a/2 + c/2	14	2a	32
2a + b + c	16	3a + 3b + 2c	32
a 17	1 1.4	· · · · · · · · · · · · · · · · · · ·	

a b' and c' axes may be obtained by cyclic permutation of the a, b and c of a'.

If monophasic $TbO_{1.715}$ is further treated with oxygen, a new phase appears which becomes the only phase observed at a composition of $TbO_{1.81}$. A miscibility gap between $\tilde{TbO}_{1.71}$ and $TbO_{1.81}$ is present at temperatures below 450°. X-Ray diffractometer patterns show that the fluorite type lines are split in a different way. The fact that the cubic (111), (220) and (222) lines are split into three lines whereas (200) and (400) remain as single lines eliminates distorted cells based on the rhombohedral system or mixtures of rhombohedral phases with different cell dimensions. A possible triclinic cell which explains the splitting of the lines reasonably well, both in position and in a relative intensity (due to multiplicity alone), as shown in Table III, has the dimensions $a = b = c = 5.286 \pm$ 0.001 Å., $\alpha = \beta = 89^{\circ} 25'$, $\gamma = 90^{\circ}$. (A tetragonal cell with $a' = \sqrt{2} a/2$, $c' \approx 98a$ or an end-centered monoclinic cell with a' = b + c, b' = b - c, c' = -a', is equivalent to this triclinic cell.) Not all of the splitting is well resolved at higher angles in the diffractometer patterns. The triclinic cell

OBSERVED AND CALCULATED $1/d_2$ VALUES FOR Tb_7O_{12} (TbO_{1.714}) $1/d^2 = 0.025197 (h^2 + k^2 + l^2) + 0.009770 (hk + kl + hl)$ $a_0 = 6.509 \pm 0.002 \text{ Å}_{.1} \alpha = 99^\circ 21' \pm 0.5'$

TABLE II

		•		Å., $\alpha = 99^{\circ} 21'$	$\pm 0.5'$		/
Intensitiesª	Indices	Calcd.	/d²Obsd.	Intensities ^a	Indices	Caled.	/dª Obsd.
	100	0.02520			411	0.44371	
	110	,04062		vw	321	,46022	0.45931
vw	110	.06015	0.06005		332	. 46639	
	ī11	.06581			410	.46743	
	200	.10078			$4\overline{2}1$.47051	
	111	, 10490			$\overline{4}22$.48748	
s	$\overline{2}10$. 10644	.10656		$33\overline{1}$.50805	
	$\overline{2}11$.12187			$4\overline{3}0$.51267	
m	$2\overline{1}1$.14141	.14143		332	.52501	
vw	210	.14551	.14551		431	.52810	
	$2\overline{2}0$.16249			411	.54147	
vw	$2\overline{2}1$. 18769	.18779		$4\overline{3}1$.54764	
	211	.20004		vvw	$42\overline{1}$.54866	.54823
	$3\overline{1}0$.22266		vw	$4\overline{2}2$.56563	.56590
	$300, 22\overline{1}$.22677			420	.58210	
	$\overline{3}11$.22831			322	.58467	
	220	.24066		vvw	<u>5</u> 11, <u>3</u> 33	.59238	.59244
	222	.26327			432	.59392	
	320	.26893			$\overline{5}10$.60626	
	311	.27805		vvw	331	.62528	.62514
m	310	.28128	.28152		$\overline{5}21$.62889	
m	$\overline{3}21$.28436	.28461		500	.62991	
vw	$3\overline{2}1$.30389	.30365	vvw	$5\overline{2}0, 4\overline{3}2$.63300	, 63303
	221	.30494			$\overline{4}40$.64996	
	311	.34555			421	.66591	
	$\overline{3}22$.35018		nıw	$5\overline{1}1$.67054	.66990
	$32\overline{1}$.36252		mw	441	.67516	.67494
	330	.36561			$5\overline{2}1$.68750	
	411	.38515		mw	510	.70397	.70414
	320	.38617			5 3 0, 4 33	.71013	
m	$\overline{4}10, 3\overline{2}2$.38926	.38913	nıw	432	.71117	.71066
m	$\overline{3}31$.39081	.39057		$\overline{5}31$.71578	
	400	.40315			430	.74715	
	222	.41959			$5\overline{3}1$.75486	
w	$4\overline{2}0$.42577	.42538				
vw	421	.43143	.43122				

^a Symbols used (in decreasing intensity): s = strong, ms = medium strong, m = medium, mw = medium weak, w = weak, vw = very weak, vvw = very weak.

permits additional weak reflections to occur (omitted for simplicity from Table III) which were not observed in the diffractometer patterns. Weak reflections were observed in Debye–Scherrer films but with insufficient accuracy to determine the true unit cell. On the premise that an ordered removal of oxygen atoms from the parent fluorite structure is responsible for this phase, the simplest stoichiometry corresponding to the triclinic phase is $Tb_{16}O_{29}$ or $TbO_{1\cdot812}$.

Oxides obtained by treatment in an autoclave were either a pseudo-triclinic $\text{TbO}_{1.81}$ or a pseudorhombohedral phase depending on whether the resulting composition was less or greater than $\text{TbO}_{1.82}$. The absence of observations of two phases in any one sample must be due to the small composition change and the proximity of lines from each phase. The phase of highest oxygen composition obtained in these experiments with molecular oxygen is $\text{TbO}_{1.827}$. Diffractometer patterns have been indexed as a rhombohedral pseudo cell with $a = 5.283 \pm 0.001$ Å., $\alpha = 89^{\circ} 41'$. A comparison of calculated and observed $1/d^2$ values is shown in Table IV. It is reasonable to expect that this cell is also associated with a specific stoichiometry, corresponding to the ordered removal of oxygen atoms from the ideal fluorite structure. Possible metal-oxygen ratios based on rhombohedral cells derived from the fluorite structure are listed in Table V. Although Tb₂₈O₅₁ corresponds to the experimental composition, additional weak lines, absent in the diffractometer traces and extremely weak Debye-Scherrer films, could not be reliably explained by that unit cell.

Specimens obtained from treatment with atomic oxygen show a fluorite lattice with an average composition of $\text{TbO}_{1.95}$ and $a = 5.220 \pm 0.001$ Å.

Table VI summarizes the results of the X-ray analyses. Five distinct phases of considerable stability and with only limited solid solution have

		TABLE III				
Observel	AND (Calculated $1/d^2$ V	ALUES FOR	t TbO _{1.809}	STOICHIC	METI
		$+l^{2}$) (0.035785) + (Metal	Oxy
		$36 \pm 0.001 \text{ Å.}, \alpha =$			4	
Intensi- tiesa	Cubic indices	'T ric linie indices	1/d² Caled.	$1/d^2$ Obsd.	5	9
ms		111	0.10592	0.10580	7	12
s	111	111, 111	.10736	.10720	7	1
ms		111, 111	.10750	.10866	8	13
					8	1
1115	200	200	14314	.14314	9	10
111		$20\overline{2}$, $02\overline{2}$.28341	.28313	9	1'
ms	220	220, 2 20	.28628	.28618	13	2
111		202, 022	.28915	.28898	13	23
		113	.38933		13	2.
		311, 131	.39077		14	2i
111		$\overline{3}11, 1\overline{3}1$.39220	39246	16	2
***	311	113, 113	.39363	.09240	16	29
m	011	311, 131	.39503	,39461	19	33
111		311, 131	.39650	.09901	19	3^{\prime}
		113	.39793		19	38
					20	34
w		222	.42369	.42337	20	37
mw	222	2 22, 222	. 42942	.42939		
w		2 22	.43515	.43524	Crose of the	
m	400	400	.57256	.57254	SUMMAR	YOF
w		$13\overline{3}, 31\overline{3}$.67132	.67065	Com- position	
niw		331, <u>1</u> 33, 3 <u>1</u> 3	.67561	.67549	TbO1.500	Body
	331	331, 331	.67991		1 0 01.500	a =
nıw		$\overline{1}33$, 331 , $3\overline{1}3$.68422	.68389	TbO1.601	Body
		133, 313	.68851			a =
mw		$0\overline{4}2, 0\overline{2}4, \overline{4}02, \overline{2}04$.70997	. 70973		
m	420	$420, 240, 4\overline{2}0, 2\overline{4}0$.71570	.71568		
mw		402, 042, 20 4, 024	.72143	.72056		
" Symbo	ols used s	ame as in Table II.			TbO1.715	Rhor

⁴ Symbols used same as in Table II.

TABLE IV

Observed and Calculated $1/d^2$ Values for TbO_{1.827} $1/d^2 = 0.35838 (h^2 + k^2 + l^2) - 0.0004023 (hk + kl + hl)$ $a = 5.283 \pm 0.001$ Å., $\alpha = 89^{\circ}41'$

ln-				In-			
tensi-	In-	1/		tensi-	In-	1/	
t ie s a	dices	Calcd.	Obsd.	tiesa	dices	Calcd.	Obsd.
ms	111	0.10631	0.10613	mw	33 ï	0.67972	0.67862
s	Ĩ11	.10774	.10768	m	331	. 68435	.68363
ms	200	.14335	.14310	$\mathbf{m}\mathbf{w}$	420	,71355	.71281
m	220	.28510	.28512	mw	420	.71999	.71935
m	$\bar{2}20$.28832	.28838	w	422	. 852 0 9	.85115
mw	311	.39142	.39165	m	$4\bar{2}2$.86173	.86128
m	311	.39462	.39521	m	$\bar{4}22$.86495	.86392
	311	.39623			333	.95679	
w	222	.42524	.42547	w	ð11	.96323	.96304
w	$\tilde{2}22$.43167	.43131	m	5Ĩ1	.96804	.96713
m	400	.57342	.57326	m	333, 511	.97126	.97022
mw	331	.67493	.67441				
-							

" Symbols same as in Table II.

been observed in the terbium-oxygen system. They are $TbO_{1.500}$, $TbO_{1.715}$, $TbO_{1.81}$, $TbO_{1.83}$ and $TbO_{2.0}$. In addition, monoclinic B type $TbO_{1.5}$ has been observed in a melted sample. The phases at the extremes in composition have structures of high symmetry, the intermediate phases show lower symmetry with the least symmetrical phase having the composition $TbO_{1.81}$ Miscibility gaps are observed in the lower composition range and are implied at higher compositions.

It should be understood that the terbium-oxygen system is quite sluggish, and hence true equilibrium probably has not often been achieved in these

T CELLS Ratio 1.720
1.720
1 700
1.760
1.840
1.731
1.808
1.704
1.741
1.815
1.852
1.821
1.710
1.742
1.774
1.806
1.839
1.719
1.781
1.844

TABLE V

TABLE VI

UMMARY OF CRYSTALLOGRAPHIC RESULTS ON THE TERBIUM-OXYGEN SYSTEM

Com- position	Major phase	Minor phase
TbO1.500	Body centered cubic $a = 10.7281 \pm 0.0005$ Å.	
TbO _{1.601}	Body centered cubic $a = 10.7281 \pm 0.0005 \text{ Å}.$	Rhombohedral $a' = 6.509 \pm 0.002$ Å, $\alpha = 99^{\circ} 21' \pm 0.5'$ Pseudo-cell $a = 5.319 \pm 0.001$ Å, $\alpha = 89^{\circ} 41.2'$
TbO _{1.715}	Rhombohedral $a' = 6.509 \pm 0.002$ Å. $\alpha = 99^{\circ} 21' \pm 0.5'$ Pseudo-cell $a = 89^{\circ} 41.2'$	
	TbO _{1.718} (rhombohedral) Pseudo-cell Triclinic $a = b = c = 5.286 \pm 0.001$ $a = \beta = 89^{\circ} 25' \gamma = 90^{\circ}$	TbO _{1.81} (triclinic) Å.
TbO1.823	Pseudo-cell Rhombohedral $a = 5.283 \pm 0.001$ Å. $\alpha = 89^{\circ} 41'$	
TbO _{1.95}	Face centered cubic $a = 5.220 \pm 0.001$ Å.	

studies. Temperatures in excess of 1100° probably would be required to obtain rapid equilibrium and then an enormous oxygen pressure would be needed to observe the higher oxides.

Figure 1 shows the interrelation of the phases found in the terbium, praseodymium^{9,12,13} and the cerium oxide^{13,14} systems. Although this may not show all the intermediate phases in the latter two systems, the appearance of the $MO_{1.715}$ phase in all three is striking. It has been determined¹⁵ that the $PrO_{1.715}$ phase is isostructural with TbO_{1.715}. It is also notable that a $MO_{1.78}$ phase has been observed in the praseodymium and cerium-oxygen

(12) R. E. Ferguson, E. D. Guth and L. Eyring, J. Am. Chem. Soc., **76**, 3890 (1954).

(13) G. Brauer and H. Gradinger, Z. anorg. u. allgem. Chem., 277, 89 (1954).

(14) D. J. M. Bevan, J. Inorg. Nuclear Chem., 1, 49 (1955).

(15) Unpublished work.

systems. (This rhombohedral phase probably has the formula M_9O_{16} , as suggested by the possible values in Table V.) A MO_{1.81} phase occurs in the terbium and cerium oxygen systems, and a MO_{1.83} phase is found in the terbium and praseodymium systems. The latter phases are not isostructural. The TbO_{1.83} phase has a rhombohedral cell and the PrO_{1.83} has a face-centered-cubic unit cell. Whether or not there are miscibility gaps between the various phases or homogeneous ranges of composition depends primarily upon the temperature and the oxygen pressure.

A notable omission is a stable M_4O_7 phase in any of the three systems. This phase frequently has been reported for the terbium and cerium systems, but the studies reported and summarized have not given any evidence of special significance for such a stable solid phase. An important group of mixed oxides of formula M4O7 recently have been described and named for the mineral Pyrochlore.^{16, 17}

Many studies have been made during the last decade¹⁸⁻²⁰ on mixed oxide phases of fluorite type with oxygen vacancies. It is not at present clear how the truly binary oxides discussed above compare with the pseudo binary mixed oxides. It will be important to know if the mixed oxides reported as solid solutions of the fluorite type are really that or if, when properly annealed, they show a tendency toward ordering of oxygen vacancies as demonstrated in the true binary oxide phases reported here. In this respect, it will be necessary to carry out the studies at temperatures where cation mobility is appreciable. Cation mobility is not required in the truly binary systems since electron movement will accomplish the same effect.

(16) R. S. Roth, J. Research Natl. Bur. Standards, 56, 17 (1956), Res. Paper No. 2643.

(17) A. J. E. Welch, private communication.

(19) J. D. McCullough and T. D. Britton, ibid., 74, 5225 (1952). (20) G. Brauer and H. Gradinger, Z. anorg. u. allgem. Chem., 276, 209 (1954).

In all these systems, anion mobility is very high at the temperatures at which the experiments were carried out but cation mobility very low.

It seems apparent that there are many ways of ordering vacancies in these materials and simple analogy will not be enough to be sure in any particular case. In some cases, the vacancies are reported as randomly arranged.²¹⁻²³ In these, it would be particularly important to study the electrical properties of the solids.

It has been suggested²⁴ that the oxygen deficiency in structures such as these may result from the formation of surfaces of discontinuity by a shear mechanism. In this way, the oxygen loss would be accommodated without the appearance of vacancies, as such, in the lattice. Structures of this type already have been solved, for example, in the (Mo, W)_nO_{2n-1},²⁵ Ti_nO_{2n-1}²⁶ and TiVO_x²⁷ systems. An alternative suggestion for the structure of bixbyite recently has been suggested²⁸ in which the oxygen lattice is changed to give a rather more octohedral arrangement around the metal atoms without the vacancies previously proposed.

This large set of anion defect structures related to the fluorite structure is at once one of the simplest and yet most beautifully intricate systems. A detailed elaboration of them would go far in advancing an understanding of the relationship between ordered intermediate phases and nonstoichiometry in chemical compounds.

(21) E. Zintl and U. Croatto, Z. anorg. Chem., 292, 79 (1939).

(22) U. Croatto and M. Bruno, "Proc. 11th Intern. Cong. Pure & Appl. Chem.," Vol. I, 69 (1947).

(23) J. S. Anderson, D. N. Eddington, L. E. J. Roberts and E. Wait, J. Chem. Soc., 3324 (1954).

(24) A. D. Wadsley, J. and Proc. Roy. Soc. of N.S.W., XCII, 25 (1958).

(25) C. Hagy and A. Magneli, Revs. of Pure Appl. Chem., 4, 235 (1954).

(26) S. Andersson, Acta Chem. Scan., in press.

(27) A. D. Wadsley, Acta Cryst., in press,

(28) H. Dachs, Z. Krist., 107, 370 (1956).

[Contribution from the Department of Chemistry, University of Notre Dame, Notre Dame, Indiana]

Chelate Stabilities of Certain Oxine-type Compounds. II. 4-Hydroxybenzothiazoles¹

BY T. J. LANE, C.S.C., AND A. SAM

Received November 5, 1960

The acid dissociation constants of 4-hydroxybenzothiazole, 2-amino-4-hydroxybenzothiazole, 2-methylamino-4-hydroxybenzothiazole and 2-amino-4-hydroxy-7-methylbenzothiazole were determined in 50% v./v. p-dioxane at 25° and the chelate stability constants of the ligands with Cu(II), Pb(II), Ni(II), Co(II), Zn(II) and Cd(II) were obtained by Calvin-Bjerrum potentiometric titration technique. The results were compared with those previously reported for 8-hydroxyquinoline, 4-hydroxybenzimidazole and 4-hydroxybenzoxazole. The stability constants of the 4-hydroxybenzothiazole chelates are lower than those of the corresponding 8-hydroxyquinolinates. unfavorable electron orientation on the donor nitrogen atom. This is explained by larger nitrogen-oxygen distance and by The stability values are higher than those of 4-hydroxybenzimidazoles and 4-hydroxybenzoxazoles and this is attributed to the influence of the larger sulfur atom in the 1-position.

In the previous paper² the chelate stabilities of formula 4-hydroxybenzimidazoles and of 4-hydroxybenzoxazoles with divalent ions have been reported. In the present paper are presented and discussed the values obtained for the metal chelates of the 4-hydroxybenzothiazoles, represented the by

(1) Presented at the 138th Meeting of the American Chemical Society, New York, N. Y., 1960.
(2) T. J. Lane, A. Sam and A. J. Kandathil, J. A m. Chem. Soc., 82

ÔH $R = H, NH_2, NHCH_3$ $R' = H, CH_3.$

⁽¹⁸⁾ J. D. McCullough, J. Am. Chem. Soc., 72, 1386-1390 (1950).

^{4462 (1960).}